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Abstract 
This paper describes algorithms for the computation 
of conjugacy classes of maximal subgroups and the 
Wyckoff positions of a space group. The algorithms are 
implemented in the computational group-theory system 
GAP and use existing standard functions of GAP as well 
as some simple but useful group-theoretical ideas. 

1. Introduction 
Traditionally, information about space groups has been 
made available in the form of lists, for example in 
International Tables for Crystollography (1995) or the 
list of all four-dimensional space groups (Brown, Billow, 
Neubtiser, Wondratschek & Zassenhaus, 1978). Space 
groups in dimensions higher than three have impor- 
tant applications as symmetry groups of quasiperiodic 
structures, such as incommensurately modulated crystals 
(Janssen & Janner, 1987; Janssen, Janner, Looijenga- 
Vos & de Wolff, 1992) and quasicrystals (Janot, 1994; 
Gratias & Hippert, 1994). However, compiling large 
lists of information poses many practical problems and 
is often impossible. A solution to this is to compute 
the desired information when the need arises. For this, 
algorithms are needed that can answer specific questions 
about a given space group. Because the computations 
involved are often too complex for hand calculations, it 
is convenient to have those algorithms in the form of 
computer programs. 

Many group-theoretical algorithms are nowadays 
available as part of group-theory systems. In order 
to have these algorithms available, we have built our 
programs on top of GAP (GAP, 1997), a system that is 
freely availabe from a number of host machines around 
the world. GAP already contains a variety of algorithms 
ready to use, so that we can avoid reinventing the wheel. 
Moreover, the current distribution of GAP also contains 
the complete list of all three- and four-dimensional space 
groups, as well as the lists of all irreducible and maximal 
finite (i.m.f.) integral matrix groups of all dimensions up 
to 24, as determined by W. Plesken and collaborators 
(see e.g. Nebe & Plesken, 1995, and references therein). 
In prime dimensions and in all dimensions up to 11, 
these integral matrix groups are available as Z-class 
representatives, whereas in the remaining dimensions 

only Q-class representatives are available. These lists 
of crystallographic groups provide plenty of material to 
which our algorithms can be applied. 

The algorithms described in this paper compute the 
Wyckoff positions and the maximal subgroups of any 
given space group, independently of its dimension. In 
practice, their efficiency is good enough to compute 
conjugacy classes of maximal subgroups or the Wyckoff 
positions of all three- and four-dimensional space groups 
on an average personal computer in little more than an 
hour (see §6). They can be seen as a complement to 
the information contained in the space-group tables of 
GAP. In addition, an implementation of the Zassenhaus 
algorithm is also made available, which allows space 
groups to be determined in dimensions larger than four. 
The point groups needed as input can be determined 
from the list of maximal integral matrix groups contained 
in GAP. 

An implementation of these algorithms is distributed 
as a GAP share package together with GAP Version 3.4.4 
(GAP, 1997). This package contains the algorithms as 
GAP code, manual pages and examples. It also provides 
a variety of other functions for space groups not men- 
tioned here, so that almost the same functionality that 
GAP offers for other types of groups, e.g. permutation 
groups, is now available also for space groups. 

A different algorithm for computing the Wyckoff 
positions of a space group has been given by Fuksa & 
Engel (1994). Their implementation performs well on 
examples with small point groups. For examples with 
larger point groups, however, our method seems to be 
more efficient as the timings given in §6 indicate. 

A package for computations with space groups is also 
being developed at the University of Nijmegen (Thiers, 
Ephraim, Janssen & Janner, 1993). Results obtained with 
this package, notably the Wyckoff positions for space 
groups up to dimension 4, can be obtained in electronic 
form on the World Wide Web (Thiers, Ephraim & de 
Hilster, 1996). 

The remainder of the paper is organized as follows. 
§2 describes the mathematical set-up and recalls some 
basic facts about space groups used throughout the 
paper. The computational methods used together with 
short explanations are given in §3. §4 explains the 
algorithm for the computation of Wyckoff positions and 
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§5 the algorithm for computing conjugacy classes of 
maximal subgroups. Finally, to give an impression of 
their use and their efficiency, examples and timings of 
their implementation in GAP are given in §6. 

our notation does not distinguish between points in 
Euclidean space, row vectors and column vectors. 

The structure of a space group is best summarized by 
the sequence of homomorphisms 

2. Mathematical set-up 

In this section, we give a short overview on space groups 
to fix the concepts and the notation. We also refer to the 
introductory chapter of Brown et al. (1978) and to the 
article of Wondratschek (1995) in International Tables 
for  Crystallography. 

A d-dimensional space group S can be regarded as an 
affine group acting on d-dimensional Euclidean space E. 
With respect to a fixed basis of the translation subgroup 
T of S, the conjugation action of S on T induces a 
homomorphism from S into GL(d, 7/). The kernel of this 
homomorphism is T itself; its image P is called the point 
group* of S, which is a finite subgroup of GL(d, 7/). 

Each element of s E S can be represented by a matrix 
of the form 

[ M s 0 , 

t s 1 

where M is an element of GL(d, 7/) and t, C Qd. In this 
representation, elements of the translation subgroup are 
matrices of the form 

[': :] 
where I d is the d-dimensional identity matrix and t E :~d. 
We call this representation of S a standard representation 
of S. In crystallographer's language, this corresponds to 
a setting with a primitive cell. 

Such a representation of S defines an action (from the 
right) of S on the row space Qd as affine maps via 

Qd x S.__, Qd 

vs ~ vM s + t s. 

The elements of the translation subgroup T of S act as 
translations on Qd. It is convenient to write an element 
s of S as a pair ( M , , t ) .  

Note that our convention of acting from the right 
differs from the convention in International Tables for  
Crystallography (1995), where the action is from the 
left on column vectors. We use this convention in 
order to maintain compatibility with the rest of GAP, 
where group action is always from the right. Moreover, 

* Note that in crystallography the term 'point group' often denotes a 
whole Q class of matrix groups: here, however, a point group is a 
lixed representative of such a Q class. 

O ~ T----~ S.--.-~ p---~ I d. 

This sequence is exact: the image of each of these 
homomorphisms is identical to the kernel of the follow- 
ing homomorphism. This structure of a space group is 
frequently used in many of our algorithms. In particular, 
the homomorphism h : S --~ P with kernel T is of 
primary importance in the problems dealt with in this 
paper. 

3. Computational methods 

This section explains the computational background for 
§§4 and 5. For definitions and explanations of basic 
group-theoretical terms, the reader is referred to standard 
text books on group theory, for example Suzuki (1982). 
The two algorithms described in this paper take as 
input a set of generating matrices of a space group 
in standard representation. From this, the point group 
in the form of an integral matrix group can easily be 
extracted. It will prove convenient, however, to use also 
other representations of the point group. GAP has built- 
in facilities that allow one to switch easily between 
different representations. In particular, we can convert 
the point group P into: 

(a) a permutation group; 
(b) a finite presentation of P; 
(c) a power-commutator presentation if P is solvable. 

These facilities allow one to make use of algorithms 
that are much more efficient than those available for 
matrix groups. The subgroup lattice of the point group, 
for instance, is better computed for an isomorphic per- 
mutation group, and then the result is translated back into 
the matrix group. This is, in fact, the primary advantage 
of building our programs on top of GAP, instead of 
writing a stand-alone package: there is a large variety 
of efficient state-of-the-art algorithms available in GAP 
that are ready to use. 

In particular, our programs make use of routines built 
into GAP to compute: 

(a) the conjugacy classes of maximal subgroups of a 
finite group; 

(b) the conjugacy classes of subgroups of a finite 
group; 

(c) maximal submodules of a finite module for a finite 
group; 

(d) orbits of points in a set under the action of a group. 
In addition, we extended GAP's  capabilities by imple- 

menting, in the GAP-programming language, functions 
for the computation of: 

(a) complements to elementary abelian normal sub- 
groups in a finite group; 
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(b) all solutions of a system of linear equations in 
Q/z.  
The complement routine essentially uses the method 
described by Celler, Neubiiser & Wright (1990). 

To compute the solutions (mod Z) of a system of 
linear equations Mx = b, where M E Z m×n, b E Qrn and 
x is a column vector with n unknowns, we first determine 
unimodular matrices P and Q such that P M Q  = D is 
a matrix in diagonal form. This amounts to computing 
the Smith normal form including transformation matrices 
[see e.g. Cohen (1993), ch. 2, or Sims (1994), ch. 8]. The 
set of all solutions (mod Z) of the system Dx = Pb is 
then obtained as follows. Let d I , . . . ,  d n be the diagonal 
entries of D and v 1, . . . ,  v m the components of Pb. The 
system Dx = Pb has solutions if and only if v i = 0 
whenever d i = 0. If solutions exist, the set of solutions 
for Dx = Pb is described by 

x i E  {O,(1/di) ,  . . . , ( d  i - 1)/di}-qt-vi/d i i f  d i ¢ O  

and 

x i E Q otherwise. 

The set of solutions of the system Mx - b is now 
obtained from the solutions of Dx' -- P M Q x '  = Pb,  
via x - Qx' .  

4. Computing Wyckoff positions 
In this section, we describe an algorithm for the com- 
putation of Wyckoff positions of a space group. In the 
following, let S be a space group, T its translation sub- 
group and E the corresponding d-dimensional Euclidean 
space. 

Definit ion 4.1. The stabil izer (or s i te -symmetry  group) 
of a point x E E is the subgroup of those elements of 
S that leave x invariant. A Wyckof fpos i t ion  for S is an 
equivalence class of all points x E E, whose stabilizers 
are conjugate subgroups of S. 

Let A 0 be the subset of those points" having as sta- 
bilizer a fixed representative of a conjugacy class of 
subgroups. Then A 0 is contained in some affine subspace 
A of E, such that it forms an open, dense subset in 
A. The points in A \ A 0 have stabilizers that are larger 
than the stabilizer of the points in A 0. The full Wyckoff 
position is given by the space-group orbit of the set 
A 0. Clearly, all points in such an orbit have conjugate 
stabilizers. Conversely, if y is a point whose stabilizer is 
conjugate to the common stabilizer of the points in A 0, 
there exists a space-group element that maps y into A 0. 
A Wyckoff position therefore is completely specified by 
the representative set A 0 of a space-group orbit. 

In the following, in line with Internat ional  Tables f o r  
Crys ta l lography (1995) [see, in particular, the article of 
Wondratschek (1995)], we shall not distinguish between 

the subset A 0 and the full affine subspace A, tacitly ad- 
mitting that the points in some subset of lower dimension 
may have a larger stabilizer. 

Definit ion 4.2. An affine subspace of F is in a special  
posi t ion if its point-wise stabilizer in S is non-trivial. 

With the exception of the Wyckoff position with 
trivial stabilizer, a Wyckoff position therefore consists 
of a space-group orbit of an affine subspace in a special 
position. 

Definit ion 4.3. Let U be a subgroup of S. An affine 
subspace A C_ E is f i xed  by U modulo  T if for all u E U 
there exists an element t,, E T such that xu = xt  u for 
all x E A. 

An affine subspace A C_ E is fixed by U modulo T if 
the orbit of A under T is fixed as a set by U. 

Lemma 4.4. An affine subspace A C E is in a special 
position if and only if A is fixed modulo T by some 
subgroup T < U _< S. 

Proof. Let A C_ E be an affine subspace in a special 
position and let V _< S be its stabilizer in S. Then U - 
VT fixes A modulo T. 

Let U be a subgroup of S properly containing T, let 
{ u 1 . . . . .  u k } be a generating set for U and let A C E be 
fixed by U modulo T. Furthermore, choose tl, . . . ,  t k E T 
such that vu i -- vt  i for all v E A. Then the subgroup V 
generated by u 1 t~ 1, . . . ,  Ukt-~l stabilizes A pointwise and 
is not trivial. Hence A is in a special position. [] 

The translation subgroup has no fixed points. There- 
fore, a subgroup of S that has a fixed point intersects T 
trivially. Note that V in the second part of the proof is a 
complement to T in the subgroup VT. The situation can 
be summarized by the diagram in Fig. 1. 

Let U in the previous lemma be given by a generating 
set (M 1, t I), ~. . ,  (Mk, tk) in standard representation. A 
point v~ E R can be mapped to another point v 2 E R d 
by a translation in S if and only if their components differ 
by an integer or, in other words, if v I - v 2 modulo Z. 

Computing the fixed points modulo T amounts to 
solving the following system of linear equations for v 

{1 
Fig. !. The slabilizer V of any point x intersects the translation 

subgroup T trivially. 
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modulo 2~: 

v (M i - Id) = --t i for 1 < i < k. 

Transposing each equation, we obtain a system 

M x = b  

these subgroups of the point group, and go with this 
information directly into step (ii). One then obtains all 
affine subspaces stabilized by some U C /4 modulo T, 
and from these the corresponding Wyckoff positions. 
In this way, one can then obtain at least some partial 
information on the Wyckoff positions of S. 

with an integer matrix M and a rational vector b for 
which we seek solutions modulo Z. The set of solutions 
of this system is a finite union of affine subspaces of 
Q,t, containing one representative of each T orbit of 
affine subspaces left invariant by U modulo T. Each 
affine subspace is in special position. For each subspace 
A let u i C 7 'J be such that v M  i -q-t, = V + U i for all 
v E A. Then the elements (M l, t I - u l )  . . . . .  (M k, t k -  uk) 
generate a subgroup V <_ S fixing A pointwise. The 
subgroup V is the pointwise stabilizer of A in U and 
a complement to T in U. Note, however, that the full 
pointwise stabilizer of A in S can be larger than V. This 
has to be checked afterwards, by looking at the length 
of the space-group orbit modulo T. 

The main idea in computing the Wyckoff positions of 
S is to run through all subgroups (up to conjugacy) of S 
containing T and for each such subgroup U to compute 
the set of affine subspaces of E fixed modulo T by U. 
By lemma 4.4, this gives all affine subspaces in special 
positions, together with their point-wise stabilizers. 

Algorithm 4.5. To compute the Wyckoff positions of 
S: 

(i) Compute a set of representatives for the conjugacy 
classes of subgroups of S I T  and determine the set/4 of 
their complete pre-images in S. 

(ii) For each U E H: 
(a) determine the set of affine subspaces fixed by U 

(modulo T), one representative for each T orbit of such 
spaces; 

(b) eliminate multiple subspaces in the same S orbit 
(modulo T); 

(c) retain only those spaces for which the S orbit 
(modulo T) has size Is/uI. Other subspaces must have 
a larger stabilizer and will show up a second time for 
a different U; 

(d) for each of the remaining subspaces, determine its 
point-wise stabilizer in U. 

When H is exhausted, we have obtained representative 
affine subspaces of all Wyckoff positions of S, together 
with their point-wise stabilizers. 

The algorithm described above is dimension indepen- 
dent and works, given sufficient resources, for arbitrarily 
large groups and dimensions. In practice, it is mainly 
limited by the size of the point group and the complexity 
of its subgroup lattice. If the point group is too big 
to compute its subgroup lattice completely, but some 
subgroups of the point group are known, one can still 
compute a set /4 containing the pre-images in S of 

5. Computing conjugacy 
classes of maximal subgroups 

In this section, an algorithm to compute conjugacy 
classes of maximal subgroups of a given space group 
will be introduced. First we have to examine maximal 
subgroups of space groups from a more theoretical point 
of view. The following definition will be helpful. 

Definition 5.1. Let U be a subgroup of the space group 
S and let T be the translation subgroup of S. 

(a) If T _< U holds, then the subgroup U of S is called 
lattice-equal (or translationengleich). 

(b) If TU - S holds, then the subgroup U of S is 
called class-equal (or klassengleich). 

Recall that, for any subgroup U of S, the translation 
subgroup T u of U is just the intersection of U and T. 
Therefore, T u = T holds if U is a lattice-equal subgroup 
of S. With respect to a fixed basis of T -- T u, the point 
group of a lattice-equal subgroup U of S is a subgroup of 
the point group of S. If U is a class-equal subgroup of S, 
then T u < T and the point group of U is Q-equivalent 
to the point group of S. 

Note that every subgroup of a space group may be 
obtained as a class-equal subgroup of a lattice-equal 
subgroup of the space group. The space group itself is 
both a class-equal and a lattice-equal subgroup. There 
exist subgroups of a space group that are neither lattice- 
equal nor class-equal. Maximal subgroups, however, are 
always either class-equal or lattice-equal. This is known 
as Hermann's theorem (Hermann, 1929). 

In the case that M is a lattice-equal maximal subgroup 
of the space group S, the point group of M is a subgroup 
of the point group of S which has to be maximal. Thus, 
we may obtain M / T  and therefore M by the methods for 
finite groups as described in §5.1. 

In the case that M is a class-equal maximal subgroup 
of the space group S, its translation subgroup T M must 
be a proper subgroup of T. In the next theorem, we 
investigate the connection between T and T m further. 

Theorem 5.2. Let M be a class-equal maximal sub- 
group of S. Let T be the translation subgroup of S and 
T M -- T fq M the translation subgroup of M. 

(i) T M is a maximal S-invariant subgroup of T. 
(ii) The factor T I T  M is an elementary abelian p group 

for a prime p. In particular, the index of T M in T is a 
p power and thus finite. 

(iii) [S : M] - IT: TM]. 
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Proof 
(i) First we have to prove that T M is invariant under 

conjugation action of S. Let s C S. We define T~t :-- 
s-ITM s. Since S = TM, we may write s = tm. Since T 
is abelian, we know that T M = T M and thus we obtain 
TM = TM m _ (T M)m = TM" But T M is the translation 
subgroup of M and therefore we have that T M is normal 
in M. So this yields T M = T M = T M and we obtain that 
T M is S-invariant. 

Now suppose there exists an S-invariant subgroup 
L with T M < L < T. Since L is normal in S, we 
have that LM is a subgroup of S. However, this yields 
S = T M  > L M  > TMM - M. But this is a contradiction, 
since M is a maximal subgroup of S. 

(ii) By (i) we know that TIT M does not have any 
subgroup that is invariant under conjugation action of 
S / T  M. Since any characteristic subgroup of TIT M, i.e. 
any subgroup of TIT M that is invariant under each 
automorphism of TIT M, would be invariant under the 
action of SIT  M, the factor group TIT M cannot have any 
characteristic subgroup. However, each finitely gener- 
ated abelian group without characteristic subgroups is 
of the form (][/p72)" for a prime p and an integer n. Le. 
TIT  M is an elementary abelian p group of order p". 

(iii) Since SIT  M is a finite group by (ii), this follows 
directly from the homomorphism theorem. [] 

By theorem 5.2, a class-equal maximal subgroup of S 
has p-power index for a prime p. We call such a maximal 
subgroup p-maximal. However, there may exist class- 
equal p-maximal subgroups for infinitely many primes 
p. [In fact it is known from group theory that there exists 
at least one class-equal p-maximal subgroup for each 
prime p with p )f IS/TI, see Suzuki (1982), ch. 2, theorem 
8.10.] Thus, we cannot compute all class-equal maximal 
subgroups at once. Here we will restrict the algorithm 
to compute class-equal p-maximal subgroups of a given 
p only. 

Let M be a class-equal p-maximal subgroup of S. Then 
theorem 5.2 shows that T M is a normal subgroup of S. 
Thus, from the group-theoretical point of view, M / T  M is 
a complement to TIT M in SIT  M. The following lemma 
shows that this is in fact a characterization of class-equal 
p-maximal subgroups. 

Lemma 5.3. Let L be a maximal S-invariant subgroup 
of T and let M be a subgroup of S such that M / L  is 
a complement of T/L in S/L. Then M is a maximal 
class-equal subgroup of S. 

Proof Suppose we have a group K with M < K < S. 
Since M is class-equal, the subgroup K is also class- 
equal. Thus we obtain L = T M < T K < T and T K is 
S-invariant. But L is maximal S-invariant in T and we 
have a contradiction. [] 

This characterization of class-equal p-maximal sub- 
groups of S by complements will be used to compute 
these subgroups. The following lemma yields that there 

are only finitely many class-equal p-maximal subgroups 
of a given space group S and fixed prime p. Futhermore, 
it will lead to a method to compute the possible transla- 
tion subgroups T M for class-equal p-maximal subgroups 
M. 

Lemma 5.4. Let S be a space group with translation 
subgroup T -~ Z d. For a fixed prime p, we consider the 
subgroup T p consisting of all pth powers of elements of 
T, i.e. T p ~- (pZ) d. 

(i) TIT p is an elementary abelian group of order pd. 
(ii) T p is normal in S. 
(iii) Let M be a class-equal p-maximal subgroup of 

S. Then T p _< T M < T holds. 

Proof. 
(i) Since TIT p ~= 7] d/(p~_)d ~= (~_/p~_)d, we obtain 

that T I T  p is an elementary abelian group of order pd. 
(ii) Since T p is a characteristic subgroup of T and T 

is normal in S, we obtain that T p has to be normal in S. 
(iii) As explained above, T M < T holds. Thus it 

remains to prove T p < T m. By theorem 5.2, the factor 
TIT M is an elementary abelian p group. But T p is the 
smallest subgroup of T that has an elemenary abelian 
factor group of p-power order and thus T p <_ T M holds. 

[] 

So let M be a class-equal p-maximal subgroup of a 
space group S for a prime p. Then the location of M in 
S is as illustrated in Fig. 2. 

Now we are ready to introduce the algorithms to 
compute maximal subgroups of a given space group. 

5.1. Lattice-equal maximal subgroups 

To compute the lattice-equal maximal subgroups of 
a space group S with translation subgroup T, we first 
obtain a permutation representation of SIT. If SIT  is 
solvable, we then compute a power-commutator presen- 
tation of this permutation group, which allows the use of 
a very efficient method to compute the conjugacy classes 
of maximal subgroups of SIT  (Cannon & Leedham- 
Green, 1997; Eick, 1993). It then remains to compute 

M N T  

S =  TM 

M 

{1} 
Fig. 2. The location of a class-equal p-maximal subgroup M. 
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pre-images of the generators of the maximal subgroups 
in S. 

If SIT is not solvable, we use the generic GAP method 
to compute the conjugacy classes of maximal subgroups 
of a permutation group. This algorithm will compute all 
conjugacy classes of subgroups of the given permutation 
group (which of course would yield all lattice-equal 
subgroups of S) and then reduce them to the maximal 
ones. It is evident that this involves a lot of overhead and 
will not be as efficient as the algorithm for the solvable 
space groups. 

5.2. Class-equal p-maximal subgroups 
Let S be a space group and p a fixed prime. The 

computation of the conjugacy classes of class-equal 
p-maximal subgroups in the general case is done in 
two parts. We will describe an alternative method for 
solvable space groups afterwards. 

First compute all possible candidates for the transla- 
tion subgroup of these maximal subgroups. By theorem 
5.2, this amounts to the computation of all maximal 
S-invariant subgroups of T with p-power index. These 
maximal subgroups will contain T p, and therefore we 
may as well compute all maximal S-invariant subgroups 
of TIT p. So we compute the linear matrix group in 
GL(d, p) induced by the conjugation action of S on TIT p, 
and then determine the maximal S-invariant subgroups 
of the elementary abelian group TIT p. It then remains to 
determine pre-images of the computed subgroups in T. 

Now suppose we have a maximal S-invariant sub- 
group L of T that has p-power index. We need to compute 
the conjugacy classes of complements to T/L in S/L. We 
first determine a finite presentation of S/T, from which 
we obtain the conjugacy classes of complements to T/L 
in S/L by the method mentioned in §3. It remains to 
compute their pre-images in S to obtain the conjugacy 
classes of class-equal p-maximal subgroups of S with 
translation subgroup L. 

If S is a solvable space group, we can use the 
following alternative method, which is sometimes more 
efficient. As outlined above, in this case we can compute 
a power-commutator presentation of SIT. This may be 
extended to a power-commutator presentation of SIT p. 
By a slight modification of the routine to compute all 
conjugacy classes of maximal subgroups in a group 
given by a power-commutator presentation, we may 
then just compute the conjugacy classes of maximal 
subgroups that do not contain TIT p. It remains to 
compute pre-images of the computed subgroups in S. 

6. Examples and timings 
In this section, we give some examples and the timings 
for these examples. All timings have been measured on a 
PC with a 133 MHz Pentium processor running FreeBSD 
Unix, Version 2.1.0. The timings are given in seconds. 

Table 1. Timings for the computation of Wyckoff posi- 
tions 

Space group Size Solvable Symm. t EGN t FE 

S~3,230) 48 Yes No I. I 0.6 
S(4,22.10.1,2) 36 Yes No 0.9 2.8 
S(4,31.7.1,1) 240 No Yes 7.1 430.0 
S(4,33,16.1.1) 1152 Yes Yes 56.9 
S~6,1) 60 No No 0.9 35.1 
S(6,2) 120 No No 2.8 162.8 
S~8) 14400 No Yes 397.2 

The first four examples are extracted from the GAP 
library. S(3,230 ) is the three-dimensional non-symmorphic 
cubic space group la3d, No. 230 in International Tables 
for Crystallography (1995). Its point group has size 48. 
The next three space groups are four-dimensional. Their 
labels are those from Brown et al. (1978), which are also 
used in the GAP library. S(4,22,10,1,2 ) is non-symmorphic 
as well, and has a solvable point group of size 36. 
S(4,31,7,1,1) is symmorphic, with a non-solvable point 
group of size 240, and S(4,33,16,1,1 ) is symmorphic as well, 
with a solvable point group of size 1152. The next two 
examples are six-dimensional space groups relevant for 
the description of the symmetry of quasicrystals. We take 
the two non-symmorphic space groups for the primitive 
icosahedral lattice (Levitov & Rhyner, 1987). S~6,1 ) has a 
point group of size 60, isomorphic to A 5, whereas S~6,2 ) 
has a point group of size 120, isomorphic to A 5 × C 2. 
Finally, we consider an eight-dimensional space group 
St8 ) with (non-solvable) point group isomorphic to the 
Coxeter group H a, whose order is 14400. H a is the 
symmetry group of the famous 660-cell polytope in four 
dimensions. A four-dimensional matrix representation, 
with matrix entries in 7/[-r], where -r = (1 + 51/2)/2 is 
the golden mean, is contained in GAP's  share package 
Chevie. This four-dimensional representation can easily 
be lifted to an eight-dimensional integral representation 
of H 4, of which we take the semi-direct product with Z 8 
as our example space group S~s ~. 

The computations have all been done in a workspace 
of 15 Mbytes, with two notable exceptions. For the com- 
putation of the Wyckoff positions and the lattice-equal 
subgroups of S~8 ), a larger workspace was necessary. 
In those two cases, we have used a workspace of 
30 Mbytes. The workspace used is in all cases consider- 
ably larger than absolutely necessary. The computations 
could have been done in a smaller workspace, at the 
expense of a somewhat longer runtime, owing to the 
more frequent garbage collections. 

Table 1 contains the timings for the computation of 
the Wyckoff positions for all our examples. For each 
group, we give the timing for our program (tEG N) and 
compare it to the runtime for the program of Fuksa & 
Engel (1994) (t~E). In two cases, such a comparison 
was not possible, as the latter program could not finish 
without exceeding the available memory (100 Mbytes). 
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Table 2. Timings for  the computation of  maximal subgroups 

Lattice Class 2 Class 3 Class 5 Class 7 
Space group Time No. Time No. Time No. Time No. Time No. 

S(3,230 ) 0.3 5 0.2 0 0.2 1 0.3 1 0.3 1 
S(4,22,10,1,2 ~ 0.3 5 0.4 2 0.3 0 0.5 2 0.7 2 
S(4,31, 7,1,1) 6.7 6 0.5 1 0.5 1 0.4 1 0.5 1 
S(4,33,16,1,1 ) 2.2 6 2.1 1 2.3 1 2.4 1 2.4 1 
S(6,1 ) 0.7 3 0.4 1 1.0 1 0.5 0 0.3 1 
S(6,2 ) 1.9 4 0.4 2 0.2 1 0.4 1 0.3 1 
S(8) 408.5 6 4.7 1 4.9 1 4.8 1 5.0 1 

The computation of the Wyckoff positions and lattice- 
equal maximal subgroups of space group S(8 ) was not 
fully automatic. For these computations, the subgroup 
lattice of the point group is needed, for which GAP 
needs a list of all perfect subgroups of the point group. 
Perfect subgroups are available in a format accessible 
by GAP's  Lattice command only up to size 5000. 
The solvable residuum of the point group of S(8 ) has 
size 7200, however. The solution was to determine 
the perfect subgroups in a first step and store them 
in the knowledge of the point group. The rest of the 
computation is then fully automatic. Since all perfect 
groups with size a divisor of 7200 are generated by two 
elements, and for each of these groups the order of these 
generators is known, we could obtain the list of perfect 
subgroups by scanning through all subgroups having 
such a generating system, and checking whether they 
are perfect. We actually need only one such subgroup 
per conjugacy class. The time for the determination of 
the perfect subgroups is included in the timings. This 
example shows that even space groups with very large 
point groups can be handled by our programs. 

If Wyckoff positions for several space groups in the 
same 2v class or Q class are needed, it is possible to 
compute the subgroup lattice of the point group only 
for one of these space groups, and use it for the other 
ones as well. With this trick, we can compute the 
Wyckoff positions of all 230 three-dimensional space 
groups in 62 s, and those of all 4783 four-dimensional 
space groups in 4284 s. 

In Table 2, we show for the same seven space groups 
the timings for the computation of maximal subgroups. 
In each case, the time required to compute the lattice- 
equal maximal subgroups is given, as well as the time to 
compute the class-equal p-maximal subgroups for sev- 
eral prime numbers p. Also, the number of the computed 
conjugacy classes of maximal subgroups is included in 
the table. All timings include the computation of the 
point group (if necessary) as well as the computation of 
the presentation that is used. 
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